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Implementation Laguerre Pseudo-Spectral 
Method for Obtaining the Approximate  
Solution of Fractional Cable Equation 

Kj. M. Abualnaja 
Abstract— This paper is devoted to present the approximate solution for the fractional Cable equation (FCE) using an efficient numerical method. The 
proposed method depends on implementation an approximate formula of the Caputo fractional derivative derived in [14]. This proposed formula is based 
on the spectral collocation method with the generalized Laguerre polynomials. The properties of these polynomials are used to reduce FCE to solve a 
system of ODEs which solved using finite difference method. Special attention is given to present the convergence analysis of the given formula. Numer-
ical example is given to show the validity and the accuracy of the proposed algorithm. 
 
Index Terms— Fractional Cable equation, Caputo fractional derivative, Finite difference method, Laguerre polynomials, Laguerre pseudo-spectral 
method, Convergence analysis.   
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1 INTRODUCTION                                                                     
ractional differential equations (FDEs) have been the focus 
of many studies due to their frequent appearance in vari-
ous applications in fluid mechanics, viscoelasticity, biology, 

physics and engineering [17]. Consequently, considerable atten-
tion has been given to the solutions of  FDEs of physical interest. 
Most FDEs do not have exact solutions, so approximate and 
numerical techniques ([23], [27]), must be used. Recently, sever-
al numerical methods to solve FDEs have been given such as 
variational iteration method [8],, Adomian decomposition 
method [5], collocation method ([7], [9]-[13], [22], [26]) and finite 
difference method ([24], [25]). 
       The Cable equation is one of the most fundamental equa-
tions for modelling neuronal dynamics. Due to its significant 
deviation from the dynamics of Brownian motion, the anoma-
lous diffusion in biological systems can not be adequately de-
scribed by the traditional Nernst-Planck equation or its simplifi-
cation, the Cable equation [15]. Very recently, a modified Cable 
equation was introduced for modeling the anomalous diffusion 
in spiny neuronal dendrites [4]. The resulting governing equa-
tion, the so-called fractional Cable equation, which is similar to 
the traditional Cable equation except that the order of deriva-
tive with respect to the space and/or time is fractional. 
          We consider the initial-boundary value problem of the 
fractional Cable equation which is usually written in the follow-
ing form 

      
( , ) ( , ) ( , ) ( , ),    

               0 1,    0 ,

u x t D u x t D u x t f x tt
x t T

β γµ= − +

< < ≤ ≤
                    (1) 

 

 
 
 

where 0 2,  0 1,   ( , )f x tβ γ< ≤ < ≤  is the source term,  µ  is a 

constant and Dδ is the Caputo fractional derivative with re-
spect to x and of order δ , where , .δ β γ=  
Under the zero boundary conditions 
   (0, ) (1, ) 0,u t u t= =                                                                      (2) 
and the following initial condition 

( , 0) ).(u x g x=                                                                                (3) 
In the last few years appeared many papers to study this model 
([2], [18], [19], [21]), the most of these papers study the ordinary 
case of such problem but in this paper we study the 
fractional case. 
Our idea is to apply the Laguerre collocation method to discre-
tize (1) to get a linear system of ODEs thus greatly simplifying 
the problem, and use FDM [20] to solve the resulting system. 

2 PRELIMINARIES AND NOTATIONS 
In this section, we present some necessary definitions and 
mathematical preliminaries of the fractional calculus theory that 
will be required in the present paper. 
 
2.1 The Caputo Fractional Derivative 
Definition 1. 

The Caputo fractional derivative operator Dν  of order ν  is defined in 
the following form 

( )1 ( )
( ) ,       0,    0,1( ) 0 ( )

mx f t
D f x dt xmm x t
ν ννν

= > >∫ − +Γ − −
 

where 1 ,  ,   (.)m m mν− < ≤ ∈ Ν Γ  is the Gamma function. 
Similar to integer-order differentiation, Caputo fractional deriv-
ative operator is a linear operation 

( ( ) ( )) ( ) ( ),1 2 1 2D f x g x D f x D g xν ν νθ θ θ θ+ = +  

where  and 1 2θ θ are constants. For the Caputo's derivative we 

have [17] 
0,       is a constant,D C Cn =                                                    (4) 

F 
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0,                               for    and ;0
( 1)

,    for    and .0( 1)

n n
nD x n nx n n

n

n
n

n n
n

∈ Ν <

= Γ + − ∈Ν ≥
Γ − +

   


  


       (5) 

We use the ceiling function ν    to denote the smallest integer 

greater than or equal to ν , and {0,1, 2, ...}.0Ν = . Recall that for   
ν ∈ Ν the Caputo differential operator coincides with the usual 
differential operator of integer order. 

For more details on fractional derivatives definitions and its 
properties see [17]. 

2.2 The Definition and Properties of the    

      Generalized Laguerre Polynomials 
 

The generalized Laguerre polynomials ( ) ( ) , 1
0

L xn n
α α

∞
> −

=
 
   

are defined on the unbounded interval [0, )∞ and can be de-
termined with the aid of the following recurrence formula 

( ) ( )( 1) ( ) ( 2 1) ( )1
( )                      ( ) ( ) 0,          1, 2, ...,1

n L x x n L xn n

n L x nn

α αα

αα

+ + − − −+

+ + = =−

              (6) 

where ( ) ( )( ) 1,  and ( ) .0 1 1L x L x xaa  a= = + −  

The analytic form of these polynomials of degree n is given by 

,( ) ( 1)( )
!0

kn n kL x xn k n kk

αα  
 
 

+−= ∑
−=

                                                  (7) 

( ) (0)
   

Ln
n

n
α α

=
+ 

 
 

. These polynomials are orthogonal on the 

interval [0, )∞ with respect to the weight function  

1
( ) .

(1 )
xw x x eα

α
−=

Γ +
  The orthogonality relation is 

1 ( ) ( )( ) ( ) .
  (1 ) 0

nxx e L x L x dxn m nmn
αα αα d

α

 
 
 

∞ +− =∫
Γ +

                 (8) 

 
Also, they satisfy the differentiation formula 

   ( ) ( )( ) ( 1) ( ),     0,1, ..., .kk kD L x L x k nn n k
α α+= − =−                      (9) 

Any function ( )u x belongs to the space 2 [0, )Lw ∞ of all square 

integrable functions on [0, )∞ with weight function ( )w x , can 
be expanded in the following Laguerre series 

( )( ) ( ),
0

u x c L xi ii
α∞

= ∑
=

                                                                  (10) 

where the coefficients ci  are given by 

( 1) ( ) ( ) ( ) ,    0,1, ... .
( 1 ) 0

i xc x e L x u x dx ii ii
αα

α

∞Γ + −= =∫
Γ + +

          (11) 

Consider only the first (m + 1)-terms of generalized Laguerre 
polynomials, so we can write 

( )( ) ( ).
0m

m
u x c L xi ii

α= ∑
=

                                                            (12) 

For more details on Laguerre polynomials, its definitions and 
properties see ([1], [3], [6], [16], [28], [29]). 

3 THE APPROXIMATE FRACTIONAL DERIVATIVES OF 
( ) ( )nL xα  AND ITS CONVERGENCE ANALYSIS 

The main goal of this section is to introduce the following theo-
rems to derive an approximate formula of the fractional deriva-
tives of the generalized Laguerre polynomials and study the 
truncating error and its convergence analysis. 
The main approximate formula of the fractional derivative of 

( )xu  is given in the following theorem. 
 
Theorem 1. [13] 
Let ( )u x  be approximated by the generalized Laguerre polynomials as 
(12) and also suppose 0ν >  then, its approximated fractional deriva-
tive can be written in the following form 

( )( ( )) ,,
m i kD u x c w xim i ki k

ν ν ν
ν ν      

−≅ ∑ ∑
= =

                           (13) 

where ( )
,wi k
ν  is given by 

( 1)( ) ., ( 1 )

k iwi k k i k
αν

ν

− +
=
Γ + − −

 
 
 

 

Theorem 2. [13] 
The Caputo fractional derivative of order ν  for the generalized La-
guerre polynomials can be expressed in terms of the generalized La-
guerre polynomials themselves in the following form 

 
( ) ( ) ( ),   , ,

0

            , 1, ..., ,

( )i

ki
D L xi j k jk j

i m

L xα
νν α

ν

ν ν

  

  

−
≅ Ω∑ ∑

= =

= +      

                         (14) 

where ( 1) ( )!( )!( )! ., , ( )!( )!( )!( )!( )!( )!0

j r k i j k r
i j k k i k k r j r rr

α α ν
ν α α

+− + + − +Ω = ∑
− − + − +=

 

 
 

Theorem 3. [13] 
The error in approximating ( )D u xν by ( )D u xm

ν  is bounded by 

( 1) / 2( ) ( , ) ,   !1
                         0,   0,    0,1, ...,

j xE m c i j eiT ji m
x j

α
ν

α

∞ +
≤ Π∑

= +

≥ ≥ =

                       (15) 
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( 1) / 2( ) ( , ) 2 ,   
!1

                         1 0,   0,    0,1, ...,

j xE m c i j eiT ji m
x j

α
ν

α

 
  
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∞ +
≤ Π −∑

= +

< ≤ ≥ =−
              (16) 

where 

, ( ) ( ) .( , )  & ( ), ,
0

D u x D u xm
ki

i j E mi j k Tk j
ν ν

ν
ν ν

  
−

  

−
Π = Ω =∑ ∑

= =
 

4 PROCEDURE SOLUTION OF THE FRACTIONAL 
CABLE EQUATION 

Consider the fractional Cable equation of type given in Eq.(1). 
In order to use Laguerre collocation method, we first approx-
imate ( , )u x t as 

   ( )( , ) ( ) ( ).
0

m
u x t u t L xi im i

α= ∑
=

                                                    (17) 

From Eqs.(1), (17) and theorem 1 we have 

( ) ( ) ( )( ) ( ) ,0

( )                          ( ) ( , ).,

m m idu t ki L x u t w xii i kdti i k
m i ku t w x f x ti i ki k

α β β
β β

γ γm
γ γ      

      

−=∑ ∑ ∑
= = =

−− +∑ ∑
= =

     (18) 

We now collocate Eq.(18) at ( 1m ν  + − ) points ,xp  

 0,1, ...,p m ν  = −  as 

( ) ( )( ) ( ) ( ) ,0

( )                      ( ) ( , )., p p

p p
m m i ku t L x u t w xi ii i ki i k

m i ku t w f ti i ki k
x x

α β β
β β

γ γm
γ γ      

      

−=∑ ∑ ∑
= = =

−− +∑ ∑
= =



(19) 

For suitable collocation points we use roots of the generalized 

Laguerre polynomial ( ) ( )1L xm
α

ν  + − . 

Also, by substituting Eqs.(17) in the boundary conditions (2) 

and using the property ( ) (0)
  

iLi i
αα  
 
 

+
= we can obtain ν    

equations 

( ) 0,
  0

m iu ti ii

α 
 
 

+
=∑

=
                                                                      (20) 

( )( ) 0.
0

(1)i

m
u ti

i
Lα =∑

=
                                                                    (21) 

Eq.(19), together with ν    equations of the boundary condi-
tions (20)-(21), give (m + 1) of ordinary differential equations 

which can be solved, for the unknowns ,   0,1, ...,u i mi = ; us-

ing the finite difference method, as described in the following 
section. 

5 NUMERICAL RESULTS 
In this section, we present a numerical example to illustrate 
the efficiency and the validation of the proposed numerical 
method when applied to solve numerically the fractional Ca-
ble equation. 
Consider the FCE (1) with 1µ = and the following source term  

( 1)2( , ) 2( ) ! ! ,
( 1)

tf x t e x x xββ γ β γβ γ
β γ

 
  
 

Γ +− −= − − − + −
Γ − +

       (22) 

and the boundary conditions (0, ) (1, ) 0u t u t= = and the ini-

tial condition ( , 0) ( ).u x x xβ γ= −  The exact solution of 

Eq.(1) in this case is 2( , )  ( ).tu x t e x xβ γ−= −  

We apply the proposed method with m=3, and approximate 
the solution as follows 

   3
3 ( )( , ) ( ) ( ).
0

u x t u t L xi ii
α= ∑

=
                                                     (23) 

Using Eq.(19) we have  
3 3( ) ( )( ) ( ) ( ) ,0 2 2

( )        ( ) ( , ),    0,1,,1 1

i ku t L x u t w xi p i pi i ki i k
m i ku t w x f x t pp pi i ki k

α β β

γ γ−

−=∑ ∑ ∑
= = =

+ =∑ ∑
= =

−



           (24) 

where xp  are roots of generalized Laguerre polynomial 

2
( ) ( )L xα , i.e., 0x = 0.427124,   1x =3.07288. 

By using Eqs.(20)-(21) and (24) we can obtain the following 
system of ODEs 

( ) ( ) ( )0 1 1 2 3
           ( ) ( ) ( ) ( ),1 1 2 2 3 3 0

u t k u t k u t

R u t R u t R u t f t

+ + =

+ + +

  
                           (25) 

( ) ( ) ( )0 1 1 2 3
           ( ) ( ) ( ) ( ),1 1 2 2 3 3 1

u t u t u t

Q u t Q u t Q u t f t

+ + =

+ + +

   
                           (26) 

( ) ( ) ( ) ( ) 0,0 0 1 1 2 2 3 3r u t r u t r u t r u t+ + + =                                   (27) 

( ) ( ) ( ) ( ) 0,0 0 1 1 2 2 3 3s u t s u t s u t s u t+ + + =                                (28) 

where 
( ) ( ) ( ) ( )( ),   ( ),    ( ),    ( )1 1 0 2 3 0 1 1 1 2 3 1k L x k L x L x L xα α α α= = = = 

 
( ) 1 ( ) 2 ( ) 1 ( ) 2

1 1,1 0 2 2,2 0 2,1 0 2,2 0

2 ( ) ( ) 1 ( ) ( ) ( ) 2
3 0 3,2 3,3 0 0 3,1 3,2 0 3,3 0

( ) 1 ( ) 2 ( ) 1 ( ) 2
1 1,1 1 2 2,2 1 2,1 1 2,2 1

2
3 1

,   ( ),

( ) ( ),

,   ( ),

(

R w x R w x w x w x

R x w w x x w w x w x

Q w x Q w x w x w x

Q x w

β β β β β β α β

β β β γ γ γ γ

β β β β β β α β

β

− − − −

− −

− − − −

−

= − = − +

= + − + +

= − = − +

= ( ) ( ) 1 ( ) ( ) ( ) 2
3,2 3,3 1 1 3,1 3,2 1 3,3 1

,       ( )          (1),      0,1, 2, 3.
  

) ( ),

i i
ir s L iii

w x x w w x w xβ β γ γ γ γ

α α

−

 
= 

 

+
= =

+ − + +
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TABLE 1 
The absolute error between the exact solution and the  

approximate solution at  m = 3,  m = 5 and T = 2. 
x  at 3u u mex approx− =   at 5u u mex approx− =  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

4.483787e-03 
4.479660e-03 
4.201329e-03 
3.695172e-03 
3.007566e-03 
2.184889e-03 
1.273510e-03 
0.319831e-03 
0.629793e-03 
1.528978e-03 
2.331347e-03 

2.726496e-05 
3.455890e-05 
3.809670e-05 
3.809103e-05 
3.514280e-05 
3.009263e-05 
2.387121e-05 
1.735125e-05 
1.119821e-05 
0.572150e-05 
0.072566e-05 

 
Now, to use FDM for solving the system (25)-(28), we will use 
the following notations  t ii t= to be the integration time 

0 ,   /t T T Ni t≤ ≤ =  for 0,1, ...,i N= . Define  

( ),  ( )n nu u t f f ti i n i i n= = . Then the system (25)-(28), is discre-
tized in time and takes the following form 

1 11
0 0 3 31 1

1 2

1 1 1 1           ,1 1 2 2 3 3 0

n n n nn nu u u uu u
k k

n n n nR u R u R u f

τττ 

+ ++− −−
+ + =

+ + + ++ + +

                        (29) 

1 11
0 0 3 31 1

1 2

1 1 1 1           ,1 1 2 2 3 3 1

n n n nn nu u u uu u

n n n nQ u Q u Q u f

τττ 

+ ++− −−
+ + =

+ + + ++ + +

 
                        (30) 

1 1 1 1 0,0 0 1 1 2 2 3 3
n n n nr u r u r u r u+ + + ++ + + =                                   (31) 

1 1 1 1 0.0 0 1 1 2 2 3 3
n n n ns u s u s u s u+ + + ++ + + =                                 (32) 

We can write the above system (29)-(32) in the following ma-

trix form as follows 

 

                   

1
1            01 1 2 2 3
1            11 1 2 2 3
1        1             1            1 2
1           1             1                1 3

1

n
uk R R k R
uQ Q Q
u

u

τττ 

τττ 

+
− − −

− − −
=

− −

  
  
  
  
     

 

1
             0        0 01 2

1             0        11 2 1 .
0      0        0        0 02
0      0        0        0 03

n nu fk k
u f
u

u

τ

+

+

    
    
    
    
         

 

     (33) 

We use the notation for the above system 

1 1 1 1 1 1,  or  ,n n n n n nAU BU F U A BU A F+ + + − − += + = + (34) 

where , , ,    and   , , , .0 1 2 3 0 1( ) ( )0 0n n n n T n n Tn nU u u u u F f fττ = =  

 
Figure 1.  Comparison between the exact solution and the  

approximate solution at T = 0.5 with τ =  0.0025, m = 3. 
 
 

 
Figure 2.  Comparison between the exact solution and the  

approximate solution at T = 0.5 with τ = 0.0025, m = 5. 
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Figure 3. The behavior of the approximate solution at different 

values of β  at γ = 0.8. 

 
Figure 4. The behavior of the approximate solution at different 

values of γ at β = 1.8. 
 
The obtained numerical results by means of the proposed 
method are shown in table 1 and figures 1-4. In table 1, the 
absolute error between the exact solution uex  and the approx-
imate 
solution approxu  at m = 3 and m = 5 with the final time T = 2 

are given. Also, in figures 1 and 2, comparison between the 
exact solution and the approximate solution at T = 0.5 with 
time step τ  = 0.0025,  m = 3 and m = 5 are presented, respec-
tively. Also, in  figures 3 and 4, the behavior of the approxi-
mate solution at T = 0.5 and m = 5 with different values of  β  
and  γ  are presented, respectively. From, these figures, we 
can see that the behavior of the approximate solution depends 
on the order of the fractional derivative. 
 

6 CONCLUSION 
The properties of the Laguerre polynomials are used to reduce 
the fractional Cable equation to the solution of system of 
ODEs which solved by using FDM. The fractional derivative is 
considered in the Caputo sense. In this article, special atten-
tion is give to study the convergence analysis and estimate an 
upper bound of the error for the proposed approximate for-
mula of the fractional derivative. The solution obtained using 
the suggested method is in excellent agreement with the al-
ready existing ones and show that this approach can be solved 
the problem effectively. From the resulted numerical solution, 
we can conclude that the used techniques in this work are ap-
pli to solve many other problems. It is evident that the overall 
errors can be made smaller by adding new terms from the se-
ries (23). Comparisons are made between the approximate 
solution and the exact solution to illustrate the validity and the 
great potential of the technique. All computations in this pa-
per are done using Matlab 8. 
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